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Abstract

We examine the incidence, form, and research consequences of measurement error in
measures of fatal injury risk in U.S. workplaces using both BLS and NIOSH data. These
data are commonly used in hedonic wage studies.  Despite the fact that each of our
measures of job risk purport to measure the same thing – the risk of a fatality while on the
job – the various measures of job risk are not highly correlated, with the maximum
correlation being 0.53.  Indeed, many of the estimated value of statistical life estimates
are negative.  We find that the National Institute of Safety and Health’s industry risk
measure produces implicit value of life estimates most in line with both economic theory
and the mode result for the existing literature than other risk measures examined. Because
we find non-classical measurement error that differs across risk measures and is not
independent of other regressors, innovative statistical procedures need be applied to
obtain statistically improved estimates of wage-fatality risk tradeoffs.
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1.  Introduction

At least since Adam Smith’s Wealth of Nations, economists have acknowledged that

workers require compensation to accept the risk of fatal or non-fatal injuries at work. A

compensating wage premium provides employers with incentives to reduce the risk on

the job, and the calculus of the marketplace allows workers and employers to trade the

costs of reducing workplace risk against the benefits associated with the risk reduction.

When large numbers of workers reveal wage-risk tradeoffs a researcher can calculate the

implied value of a statistical life, or the wage reduction associated with reducing by one

worker the expected number of deaths. Because the value represents the amount of total

wages that workers are willing to forgo to reduce risk the value of a statistical life appears

to be a useful tool for evaluating individuals’ willingness to pay for reductions in risk in

other situations and provides policymakers with valuable information for the benefit side

of programs to improve health and safety (Office of Management and Budget 2003). We

examine here the amount of heterogeneity in estimated compensating wage differentials

for fatal injury risk in the United States across alternative risk measures, whether wage

differential differences across risk measures can be reconciled statistically, and discuss

the policy and future research consequences of differences in compensating wage

differentials across risk measures.

When basing policy on estimates of the price of risk the precision and accuracy of

the estimates can be important. Yet, Viscusi (1993) and Viscusi and Aldy (2002), in

reviewing labor market studies of the value of life, report that the majority of the

estimates are in the $4 to $9.5 million range (excluding the studies that authors

considered flawed). Although there is over a 133 percent variation in the point estimates

from the most well done studies, Viscusi correctly notes that much variation should be
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expected, because the studies used different methods and data. Of course, the precision of

implicit value of life estimates depends on how accurately job fatality risk is measured. It

is well known that random measurement error generally results in estimates of

coefficients that are biased toward zero or attenuated (See Griliches (1986) for an

excellent review of the early literature and Bound, Brown, and Mathiowetz (2001) for a

review of the more recent literature). Here we document that most measures of job risk

commonly used in the estimation of hedonic labor market equilibrium models seem to

measure poorly the job risk that workers face and examine the statistical issues involved

when dealing with the non-random measurement errors in fatality risks for U.S. jobs.

In particular, we match the Outgoing Rotation Groups of the Current Population

Survey (ORG-CPS) to multiple measures of job risk: the Bureau of Labor Statistics

estimates from their Survey of Working Conditions and the National Institute of

Occupational Safety and Health estimates from their National Traumatic Occupational

Fatality survey. Because we have multiple measures of job risk, as well as aggregate

measures of job risk by demographic groups, we may compare the various measures of

job risk to infer the reliability of our job risk measures. The results are not heartening. We

find strong evidence that the job risk measures contain noteworthy measurement error.

Despite the fact that each of our measures of job risk purport to measure the same thing –

the risk of a fatality while on the job – the various measures of job risk are not highly

correlated, with the maximum correlation being 0.53.i Regression coefficient estimates

that do not account for substantial measurement error may be highly attenuated, which

Hausman, Newey, and Powell (1991) term the iron law of econometrics. Attenuation bias

suggests that existing estimates of the value of a statistical life are severely

underestimated.
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However, the situation concerning estimated compensated wage differentials is

more complex. We find evidence that the measurement error in job risk measures is non-

classical. That is, we find that the measurement error is correlated with the covariates that

are usually in earnings or wage equations. When the measurement error in fatality risk is

correlated with other variables in the wage equation, there may be other biases offsetting

the attenuation that usually occurs with purely random measurement error. We conclude

by noting that the NIOSH industry based risk measure produces price of risk estimates

that are most in line with economic theory and past evidence.

2. Measuring the Price of Risk

The starting point for our analysis is a wage equation of the form:

*
i i i iln( w ) X rβ γ ε= + + (1)

where iln( w ) is the natural logarithm of the ith worker’s wage, *
ir  is the measure of risk

(possibly a vector), iX  is a vector of covariates, ( , )β γ are coefficients to be estimated,

and iε is the error term of the regression. As a point of departure we consider the

convenient case that occupies the bulk of the interest in the measurement error literature

where 0i iCov( X , )ε =  and 0*
i iCov( r , )ε = , so that the risk measures and other covariates

are exogenous. The wage equation (1) with exogenous regressors is what Viscusi (1993)

calls the basic approach in the literature and yields a natural interpretation for γ as the

implicit price of risk. Accurate estimates of the implicit price of risk and other non-wage

job characteristics have taken on increased importance because they are a focal part of

attempts to uncover the underlying utility and cost functions (Kniesner and Leeth 1995),

which is a subject of renewed interest by econometricians (Ekeland, Heckman, and

Nesheim 2002).



4

2.1 Data On Fatality Rates

Our data on wages and worker characteristics are from Outgoing Rotation Groups

of the Current Population Survey (ORG-CPS). We match the ORG-CPS to measures of

job risk. There are two major sources of government-reported job risk: (1) the Bureau of

Labor Statistics (BLS) estimates from their Survey of Working Conditions and (2) the

National Institute of Occupational Safety and Health (NIOSH) estimates from their

National Traumatic Occupational Fatality Survey. The NIOSH data provide one-digit

occupation or industry mortality rates by state, while the BLS data contain counts of

deaths by three-digit occupation or industry codes but do not provide any regional

variation. The risk measures have their own distinct costs and benefits for researchers.

The BLS data, available annually from 1995 to 2000, contain very detailed

measures of the annual number of deaths, but the data suppression procedure requires at

least 5 deaths in a cell before the number of deaths is reported. Thus, there are a

substantial number of missing values in the BLS data. The use of annual data may be

subject to a great deal of sampling error associated with the annual fluctuation in the

number of deaths. Moreover, the BLS data only provide the counts of the number of

deaths in each industry or occupation. To create a fatality rate, it is necessary for

researchers to estimate the number of workers in an industry or occupation. To estimate

the numbers of workers in industries and occupations, we use the ORG-CPS data, which

in turn generates additional measurement errors in our risk (fatality rate) measures.

Finally, by their construction the BLS data mask geographic variation in job risk.

The NIOSH data provide fatality rates by one-digit industry or occupation codes

by state. It reports 5-year averages: 1981–1985, 1986–1990, and 1991–1995. NIOSH

data, then, do not require the researcher to estimate the number of workers in an industry

or occupation cell, allow job risks measure to vary by state, and smooth much of the
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sampling variation by using a 5-year average. The use of the 5-year average and the

coarser one-digit industry or occupation codes by state reduces, but does not eliminate,

the problem of missing values because of data suppression. On the other hand, the

NIOSH data treat police officers and dental assistants as having the same job risk as both

are in the same one-digit (service worker) occupation. The use of 5-year averages, while

smoothing the sampling variation, may miss important time-series variation although

having less so-called assignment error as one-digit industry and occupation more

accurately reported than the corresponding three-digit industry and occupation (Bound,

Brown, and Mathiowetz 2001).

Although we ultimately use both industry-based and occupation-based risk

measures, we would be remiss if we did not comment on the relative merits of the two

risk measures. At first glance, the use of the industry measure seems inappropriate.

Specifically, the industry risk measure assigns the same job risk to a secretary in the coal

mining industry as to the coal miner, clearly overstating the secretary’s level of job risk

and understating the coal miner’s job risk. In contrast, the use of occupational risk would

combine the job risk of a secretary in the coal mining industry with a secretary in the

insurance industry, presumably a pair with a much more homogeneous job risk.

However, a worker’s industry is measured more accurately than a worker’s occupation

(Bound, Brown, and Mathiowetz 2001). The employer and employee agree on industry

classification 84–92 percent of the time but agree on occupation classification only 58–81

percent of the time with greater agreement the broader the classification (Mellow and

Sider 1983). As an indication of the importance of assignment error to the problem at

hand, for data in which both the firm and worker agree on the three-digit  industry code

the estimated price of injury risk is 50 percent higher than in the typical data set with

assignment error (Mellow and Sider 1983).
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The quality of estimates is necessarily limited by the quality of measurement. No

matter how sophisticated the theoretical and econometric models, data of poor quality

may still provide estimates of poor quality. In the next section, we suggest why the data

from the BLS and NIOSH, while providing extremely accurate measures of the aggregate

job risk in the United States, may not provide accurate estimates of the job risk of

workers in a representative sample.

2.2 Summary of Measurement Error Problems

There are essentially three problems in measuring of job fatality risk. First,

because we divide workers into industries or occupations – some of which are quite small

– we may have considerable sampling variation within industry and occupation cells.

Although both the BLS and NIOSH data recognize the problem of industry or occupation

cells with few fatalities and suppress data when the number of fatalities is too low, the

inherent sampling variation still creates measurement error. Second, within occupations,

there may be a great deal of heterogeneity in the actual job risk, and the assignment of job

risk may be extremely non-random. For instance, employers may assign male and older

clerks at convenience stores evening and late night hours when the risk of holdup – and

injury during the robbery – are particularly high and assign female and younger clerks

daytime hours. Because we only measure the aggregate job risk of convenience stores

clerks, we in turn overestimate the job risk of young and female clerks and underestimate

the job risk of older and male clerks. Finally, because we need to assign workers to an

industry or occupation the quality of our measurement is limited to the quality of the data

on industry and occupation assignment, and we have noted that industry and occupation

(especially at the three-digit level) are not measured accurately.
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3. Econometric Background

If the researcher could measure *
i i( X ,r )  perfectly, Ordinary Least Squares (OLS)

estimation of equation (1) would provide consistent and efficient estimates of the

parameters ( , )β γ  if the functional form of the conditional mean function were properly

specified and the covariates *
i i( X ,r )  orthogonal to the error term. There are numerous

reasons to suggest that the measure of job risk ( *
ir ) is mismeasured and perhaps

mismeasured badly.

First, government fatality reports are inherently an estimate of job risk: they are

realizations of a random variable. For instance, suppose there are kN  workers in the kth

industry (or occupation) category, and each worker is subjected to a risk, *
kr .

Unfortunately for the researcher, the government’s tally of deaths in the kth category is

not exactly equal to the expected number of deaths, *
k kr N . The government’s tally is

equal to the random variable kD . Using the random variable kD , the researcher

constructs an estimate of *
kr  as k k kr D / N= . Although *

k kE( r ) r= , it is almost certain that

*
k kr r≠  so that *

k k kr r η= + , where kη  is the measurement error associated with the

variable kr .

Even when workers correctly identify their industry and occupation (and as we

will emphasize, there is much measurement error in the industry and occupation

measures in the CPS), it is likely that the measurement of job risk is in error. Past studies

have indicated that job risk differs by firm size, region, and worker characteristics. Thus,

when we make the further substitution for the ith worker’s risk (who is in the kth
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industry/occupation class) that *
i kr r= , we are undoubtedly introducing measurement

error, or

*
k i ikr r ν= + (2)

where ikν represents the measurement error associated with using kr  as a proxy for *
ir .

The basic form of measurement error in (2) undoubtedly attenuates the estimates of the

coefficient of interest in the hedonic wage equation (1), γ . From an empirical standpoint

the relevant issue is the severity of attenuation bias that results from the measurement

error ikν .

3.1 Determining the Extent of Measurement Error

We have up to four reports on the level of job risk that we may use to determine

the extent of the measurement error. To see how multiple measures can be helpful

consider two measures of job risk:

*
1 1i i ir r ν= +  and  (3)

2 2
*

i i ir r ν= + , (4)

where *
ir is the true measure job risk, jiν  is the measurement error associated with the

jth  measure of  job risk, and jir is the jth  observed measure of job risk. The covariance

of the two measures is simply

* * *
1 2 1 2 1 2( , ) ( ) ( , ) ( , ) ( , )i i i i i i i i iCov r r Var r Cov r Cov r Covν ν ν ν= + + + , (5)

and the variances of the two measure are

* *
1 1 1( ) ( ) 2 ( , ) ( )i i i i iVar r Var r Cov r Varν ν= + +  and (6)

* *
2 2 2( ) ( ) 2 ( , ) ( )i i i i iVar r Var r Cov r Varν ν= + + , (7)
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which provides us with six unknown parameters and three equations and demonstrates

why it is impossible to make much progress on the problem in the form described in (3)–

(7): the system is underidentified.

Suppose we follow Griliches (1986) and assume for the time being that our

measurement error is classical. If * *
1 2 1 2( , ) ( , ) ( , ) 0i i i i i iCov r Cov r Covν ν ν ν= = =  our three-

equation system reduces to

*
1 2( , ) ( )i i iCov r r Var r= , (8)

*
1 1( ) ( ) ( )i i iVar r Var r Var ν= + , and (9)

*
2 2( ) ( ) ( )i i iVar r Var r Var ν= + . (10)

With additional covariates one needs to make the additional assumptions that

1( , ) 0i iCov Xν =   and 2( , ) 0i iCov Xν =  so that the measurement errors are uncorrelated

with covariates in our basic example case. Because we have up to four measures of job

risk, the classic errors-in-variables model has empirical content: the covariance of any

two measures of risk should have precisely the same covariance as any other two

measures. When the measurement error is classical and there are multiple measures of a

variable, one may use Instrumental Variables (IV) to obtain a consistent estimate of the

price of risk (Griliches 1986).ii

It is useful now to present a convenient decomposition for OLS regressions. Yule

(1907) has shown that the estimation of the hedonic wage equation (1) with OLS is

equivalent to the results using three simpler regressions. First, one estimates

ln( )i i iw X b ε ′= + (11)

and recovers the residuals, which we denote ln( )iw ′ . Second, one estimates

i i ir X uδ ′= + (12)
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and recovers the residuals, which we denote ir′ . Finally, one then estimate the equation 

ln( )i i iw r γ ε′ ′ ′′= + . (13)

Because both the dependent variable and independent variables have been purged of their

covariation with X, estimation of equation (13) will yield precisely the same estimate of

γ  as the OLS of γ  from the multiple regression (1) (Goldberger 1991).

Exploiting Yule’s decomposition and continuing with the convenient case where

the measurement error is classical, our three equations system of covariances would

simply become

*
1 2( , | ) ( | )i i i i iCov r r X Var r X= , (14)

* *
1 1 1( | ) ( | ) ( | ) ( | ) ( )i i i i i iVar r X Var r X Var X Var r X Varν ν= + = + , and (15)

* *
2 2 2( | ) ( | ) ( | ) ( | ) ( )i i i i i i i i iVar r X Var r X Var X Var r X Varν ν= + = + , (16)

where 1 1( | ) ( )i iVar X Varν ν= and 2 2( | ) ( )i i iVar X Varν ν=  by the assumptions

that 1( , ) 0i iCov Xν =   and 2( , ) 0i iCov Xν = . As * *( ) ( | )i iVar r Var r X≥ , the addition of

covariates must always reduce the signal-to-noise ratio

[ ( )* *( | ) / ( | ) ( )i i jiVar r X Var r X Var v+ ]. In general, the addition of covariates should

increase the attenuation bias associated with the measurement error.

4. Empirical Results

In Table 1 we present the correlation and Yulized residual correlations for the various job

risk measures. We use data from the 1995 ORG-CPS. The raw correlation before

conditioning on any covariates ranges from 0.53 to 0.30. Because the correlation differs

by a magnitude of over 75 percent we have at least some evidence that the measurement

error is non-classical. When we condition on the full set of covariates the correlations
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range from 0.41 to 0.02. Including both state controls and industry and occupation

controls reduces the correlation among the various measures. In absence of measurement

error the correlations should be 1.0. A quick review of equations (8)–(10) and (14)–(16)

reveals another testable implication of the classic errors-in-variable model: the correlation

among all four risk measures should be identical. We clearly reject the hypothesis of no

measurement error and reject the hypothesis that the measurement error is classical.

4.1 Attenuation

In Table 2, we produce the full range of Yulized residual covariances, which in

turn may be used to construct any coefficient estimate desired. The OLS estimates of the

price of risk are simply the ratio of the risk measure covariance with the wage measure,

divided by the variance of the risk measure; one may form any IV estimate desired by

dividing the covariance of risk and wage measures by the covariance of two risk

measures. The ratio of the variance of the risk measure to its covariance with another risk

measure in turn meters the magnitude of the attenuation bias resulting from measurement

error in job risk. The ratios of the variance-to-covariance are large, particularly for the

BLS occupation measure, which suggests that OLS estimates of the hedonic wage

equation (1) would be substantially attenuated.

For instance, if we focus on last column of Panel C for men, we could construct

the OLS estimate using the NIOSH industry measure as

cov(ln , ) / var( ) 0.01/13.75 0.000073wage NIOSH Ind NIOSH Ind = ≈ .  

We may also then use the BLS occupation measure as an instrument, which results in the

IV estimates of job risk as

cov(ln , ) / cov( , ) 0.06 / 2.02 0.0297wage BLS Occ NIOSH Ind BLS Occ = ≈ .  
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so that the IV estimate is over 40 times the magnitude of the OLS estimate.  Relying on

the last column makes the degree of attenuation bias particularly severe because the

industry and occupation controls remove much of the variation that is common across

both measures.  The raw correlation between the BLS occupation and NIOSH industry

measures is 0.30, but once we condition on industry and occupation, the correlation is

reduced to just 0.05.

Negative measures of job risk compensation are substantially attenuated as well.

Notice that the covariances of the logarithm of wages and the various job risk measures

are quite different and often of the opposite sign, which reinforces the emerging

implication that measurement error is non-classical. The negative covariances between

wages and job risks suggest that our measures of job risk may be correlated with the

regression error.iii  Indeed, because job safety is a normal good (Viscusi and Aldy 2002),

economic theory suggests that  factors increasing the wages and hence the wealth of the

workers should reduce job risk. There would appear to be a clear theoretical reason

suggesting that unobservables that increase wages should be negatively correlated with

job risk.

4.2 A Deeper Look at Risk Measures

It may be informative to invert our research focus and consider not whether there

is a wide variation of estimates for the price of risk but instead whether there is a

discernable pattern to the price of risk coefficients such that certain ones are similar to the

estimates highlighted in Viscusi and Aldy (2002). In particular, does one of the risk

measures or covariate lists stand out in terms of producing estimated price of risk and

implicit value of life estimates that are similar to results that lie in or around the range of

$4 million to $9.5 million?
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In Tables 3 and 4 we present regression results for OLS estimates of the price of

risk and value of life for the four basic risk measures: BLS industry and occupation and

NIOSH industry and occupation. To avoid the problems of aggregation mentioned earlier

we estimate separate regressions for white men and white women. For positive values of

the risk coefficient, we also produce values of the statistical life in millions of dollars.

Two main results emerge from Tables 3 and 4.  First, the regressions estimated with

NIOSH industry risk measures, particularly for white men, are most like the results

highlighted in Viscusi and Aldy (2002) as being the preferred estimates for applications

of economic policy. Our result that the NIOSH industry based risk measure produces

price of risk estimates that are most in line with economic theory and past evidence is

consistent with Moore and Viscusi (1988) who first identified the relative merits of the

NIOSH risk measure in hedonic wage equation research.  Second, numerous estimates of

the risk coefficient are negative, contrary to theory.  For men, 7 of the 16 estimated

coefficients are negative, and for women, 9 of the 16 estimated coefficients are negative.

For the NIOSH industry measure, however, 7 of the 8 coefficients are positive and the

negative coefficient is not statistically different from zero at the five-percent level.

5. Discussion

Existing estimates of the price of risk have generally ignored any measurement problem

in the measures of job risk. We assemble compelling evidence of non-ignorable

measurement error in the various measures of job-related fatal injury risk. Because we

have multiple measures of job risk, we may look at the correlation among the various

measures of job risk. The correlation is seldom above 0.5 and the inclusion of richer sets

of covariates lowers the correlations among pairs of risk measures.
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The form of the measurement error is also econometrically troublesome. We find

measurement error in the fatality rate (ν) that is correlated with the covariates (X)

typically included in wage or earnings equations. The correlation between ν and X means

that typical errors-in-variables models will not reveal unbiased parameter estimates of the

price of risk. Given that we find convincing evidence that the measurement error is

correlated with observable factors that affect wages (the covariates), we expect that the

measurement error will also be correlated with unobservable factors affecting wages (the

regression error). Complex correlations among the fatality risk regressor, other regression

covariates, and the overall regression error in the hedonic wage equation (1) make

obtaining consistent estimates of the price of risk in a hedonic wage equation

econometrically challenging.

Our IV estimates illustrate the potential attenuation that may plague the OLS

estimates. Coefficient estimates may also be biased away from zero if there is a negative

covariance between the measurement error and the true value of job risk (Black, Berger,

and Scott 2000; Kane, Rouse, and Staiger 1999). Not accounting for heterogeneity in

workers’ skills in avoiding work-related accidents may cause us to overestimate the price

of risk (Shogren and Stamland 2002). Although the presence of measurement error that

we have documented suggests that current estimates of the price of risk are severely

attenuated, other biases such as aggregation may cause us to overestimate the price of

risk (Kniesner and Leeth 1991; Lalive forthcoming).

The problems are formidable in obtaining statistically consistent point estimates

for γ in (1). The existing measurement error literature provides little guidance in how to

correct for non-classical measurement error problems of the type we have found. Because

job accidents are random variables with a very low incidence the coefficient of variation

is quite volatile and some inter-temporal smoothing techniques might be applied
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fruitfully to the time-series of risks for the large majority of workers with jobs in the low

range of r (McClellan and Staiger 1999). Job risk undoubtedly varies by the

characteristics of the workers and firms in ways in which economists do not yet fully

understand but may be handled with specialized IV techniques that explicitly consider the

stochastic characteristics of multiple samples (Dickens and Ross 1984).

We conclude by reiterating that existing estimates of the price of fatal injury risk

may suffer from substantial attenuation bias to the extent that they have not controlled for

measurement error in job risk. However, because of the evidence of non-classical

measurement errors in risk that seems widespread we believe that the conventional IV

point estimates in Section 4 are most likely not statistically consistent estimates of γ̂  in

(1). If crucial for policy, point estimates should ideally use the NIOSH based industry

risk measure with estimators that take account of the particular type of measurement

errors labor economists confront in micro data sets on workers. In many policy

applications, though, bounding the estimate of the price of risk will be sufficient for

informed decision making (Kniesner and Viscusi 2003) so that researchers can make

increased use of recent developments in the econometrics of error bounds on parameters

(Black, Berger, and Scott 2000; Bound, Brown, and Mathiowetz 2001).
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6. Notes
                                                
i The correlation we find across risk measures is at the middle of the correlations for

multiple measures of labor market variables such as transfer payments and education

reported in Bound, Brown, and Mathiowetz (2001).

ii When the measurement error is non-classical IV estimates may produce inconsistent

estimates (Black, Berger, and Scott 2001; Frazis and Loewenstein 2002; Kane, Rouse,

and Staiger 1999).

iii Black, Sanders, and Taylor (2002) argue that the measurement error in schooling in the

1990 Census is negatively correlated with the regression error, suggesting that less able

people are more likely to make reporting mistakes and more likely to receive lower

wages.
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Table 1. Correlations and OLS Residual Correlations for Male Workers
1995 CPS Outgoing Rotations Data, BLS Risk Data, and NIOSH Risk

Data

Basic Controls no yes yes yes Yes
Marital Status no no yes yes Yes
State no no no yes Yes
Industry/Occupation no no no no Yes

Correlations
NIOSH Ind / NIOSH Occ 0.53 0.43 0.43 0.32 0.28
NIOSH Ind / BLS Ind 0.48 0.46 0.45 0.45 0.06
NIOSH Ind / BLS Occ 0.30 0.27 0.27 0.26 0.05
NIOSH Occ / BLS Ind 0.37 0.33 0.33 0.31 0.07
NIOSH Occ / BLS Occ 0.40 0.38 0.38 0.38 0.09
BLS Ind / BLS Occ 0.43 0.40 0.40 0.39 0.22

Note: The residual correlations are based on the OLS regression of the risk variable on a set of independent
variables. The basic controls are dummy variables for age, age quartic, education, race, ethnicity, and union
coverage. After estimating the residuals for each regression, we estimated the residual correlations for each set of
regressions. The number of observations for the 1995 CPS Outgoing Rotations data is 51,140.
Source: Authors’ calculations.
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Table 2. Covariances and Variances of Residual Estimates for Male
Workers

1995 CPS Outgoing Rotation Data, NIOSH Risk Data, and BLS Risk
Data

Panel 1. NIOSH Industry / NIOSH Occupation

Basic
Controls

Marital
Status

State Ind/Occ

VAR (Lnwage) 0.25 0.24 0.23 0.21
VAR (NIOSH Ind) 40.02 39.92 33.91 14.80
VAR (NIOSH Occ) 45.75 45.71 38.57 17.09
COV (NIOSH Ind, NIOSH Occ) 18.50 18.43 11.56 4.51
COV (Lnwage, NIOSH Ind) 0.07 0.06 0.15 0.01
COV (Lnwage, NIOSH Occ) −0.22 −0.23 −0.13 0.02
R2 Lnwage on X 0.26 0.27 0.29 0.37
R2 NIOSH Ind on X 0.03 0.03 0.21 0.64
R2 NIOSH Occ on X 0.09 0.09 0.24 0.66

Panel 2. NIOSH Industry / BLS Industry

Basic
Controls

Marital
Status

State Ind/Occ

VAR (Lnwage) 0.25 0.25 0.24 0.21
VAR (NIOSH Ind) 47.80 47.67 39.58 18.20
VAR (BLS Ind) 59.46 59.36 58.09 35.65
COV (NIOSH Ind, BLS Ind) 24.56 24.45 21.72 1.53
COV (Lnwage, NIOSH Ind) 0.11 0.09 0.18 0.02
COV (Lnwage, BLS Ind) −0.06 −0.08 −0.04 −0.06
R2 Lnwage on X 0.25 0.26 0.28 0.36
R2 NIOSH Ind on X 0.04 0.04 0.21 0.63
R2 BLS Ind on X 0.06 0.06 0.08 0.43
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Table 2 cont. Covariances and Variances of Residual Estimates for Male
Workers 1995 CPS Outgoing Rotation Data, NIOSH Risk Data, and BLS

Risk Data

Panel 3. NIOSH Industry / BLS Occupation

Basic
Controls

Marital
Status

State Ind/Occ

VAR (Lnwage) 0.25 0.24 0.24 0.21
VAR (NIOSH Ind) 39.69 39.59 32.60 13.75
VAR (BLS Occ) 154.54 154.35 152.86 115.10
COV (NIOSH Ind, BLS Occ) 21.66 21.58 18.90 2.02
COV (Lnwage, NIOSH Ind) 0.06 0.04 0.13 0.01
COV (Lnwage, BLS Occ) −0.22 −0.23 −0.18 0.06
R2 Lnwage on X 0.29 0.30 0.32 0.41
R2 NIOSH Ind on X 0.03 0.03 0.20 0.66
R2 BLS Occ on X 0.04 0.04 0.05 0.29

Panel 4. NIOSH Occupation / BLS Industry

Basic
Controls

Marital
Status

State Ind/Occ

VAR (Lnwage) 0.25 0.25 0.24 0.21
VAR (NIOSH Occ) 50.20 50.14 42.08 19.02
VAR (BLS Ind) 59.16 59.06 57.83 35.39
COV (NIOSH Occ, BLS Ind) 18.39 18.31 15.62 1.99
COV (Lnwage, NIOSH Occ) −0.22 −0.23 −0.14 0.02
COV (Lnwage, BLS Ind) −0.06 −0.07 −0.03 −0.06
R2 Lnwage on X 0.25 0.26 0.28 0.36
R2 NIOSH Occ on X 0.09 0.09 0.24 0.65
R2 BLS Ind on X 0.06 0.06 0.08 0.43
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Table 2 cont. Covariances and Variances of Residual Estimates for Male
Workers 1995 CPS Outgoing Rotation Data, NIOSH Risk Data, and BLS

Risk Data

Panel 5. NIOSH Occupation / BLS Occupation

Basic
Controls

Marital
Status

State Ind/Occ

VAR (Lnwage) 0.25 0.25 0.24 0.21
VAR (NIOSH Occ) 59.99 59.95 51.18 23.63
VAR (BLS Occ) 175.79 175.53 173.78 131.13
COV (NIOSH Occ, BLS Occ) 39.80 39.72 36.50 5.11
COV (Lnwage, NIOSH Occ) −0.22 −0.23 −0.14 0.02
COV (Lnwage, BLS Occ) −0.20 −0.21 0.16 0.05
R2 Lnwage on X 0.25 0.26 0.28 0.36
R2 NIOSH Occ on X 0.09 0.09 0.24 0.65
R2 BLS Occ on X 0.04 0.05 0.06 0.29

Panel 6. BLS Industry / BLS Occupation

Basic
Controls

Marital
Status

State Ind/Occ

VAR (Lnwage) 0.25 0.25 0.24 0.2
VAR (BLS Ind) 67.88 67.78 66.45 42.19
VAR (BLS Occ) 175.28 175.02 173.33 130.92
COV (BLS Ind, BLS Occ) 44.03 43.91 42.56 16.43
COV (Lnwage, BLS Ind) −0.06 −0.08 −0.04 −0.06
COV (Lnwage, BLS Occ) −0.20 −0.21 −0.16 0.0
R2 Lnwage on X 0.25 0.26 0.28 0.3
R2 BLS Ind on X 0.06 0.06 0.08 0.4
R2 BLS Occ on X 0.04 0.05 0.05 0.2

Source: Authors’ calculations.
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Table 3. Estimated Price of Risk for White Male Workers
 

 

Panel 1.  ORG and NIOSH Industry Risk: 1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit)  no no yes yes 
Industry/Occupation  no no no yes 
      
      
Risk/100,000  118 379 573 123 
  (3.28) (7.68) (11.68) (1.90) 
VSL in $1,000,000  4.1 13.3 20.1 4.3 
*There are 24,567 observations in the regressions.      
Panel 2.   ORG and NIOSH Occupation Risk:1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit)  no no yes yes 
Industry/Occupation  no no no yes 
      
      
Risk/100,000  -515 -438 205 181 
  (-14.62)    (-8.13)    (3.57) (2.21) 
VSL in $1,000,000  ---- ---- 7.2 6.3 
*There are 24,586 observations in the regressions.      
Panel 3. ORG and BLS Industry Risk: 1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit  no no yes yes 
Industry/Occupation  no no no yes 
      
Risk/100,000  -135 -53.3  189 -178 
  (-4.32)    (-1.34)   (4.03) (-3.20) 
VSL in $1,000,000  ---- ----   6.6 ---- 
*There are 20.920 observations in the regressions.      
Panel 4. ORG and BLS Occupation Risk: 1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit  no no yes yes 
Industry/Occupation  no no no yes 
      
Risk/100,000  -147 -122 167 76.7 
  (-7.13) (-4.84) (5.07) (2.16) 
VSL in $1,000,000  ---- ---- 5.8 2.7 
*There are 17,836 observations in the regressions.      

Note: The dependent variable is the natural log of the worker’s real wage.  For the basic regression, the
independent variables include a quartic in the worker’s age, a vector of dummy variables that control
for the worker’s education, a vector of dummy variables for marital status, a vector of dummy variables
indicating whether the worker is Hispanic, Asian, African American, or other race, and a dummy
variable indicating whether the worker is under a union contract or not, and dummy variables for the
worker’s marital status.  Workers are aged 25 to 60 inclusive.  T-statistics are given in parentheses. The
data set is for 1995.  In this table, we merged the non-fatel risk rates by 3-digit occupation codes.
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Table 4. Estimated Price of Risk for White Female Workers
 

 

Panel 1.  ORG and NIOSH Industry Risk: 1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit)  no no yes yes 
Industry/Occupation  no no no yes 
      
      
Risk/100,000  110 268 220 -77 
    (2.32)    (4.54)   (3.74) (-1.09) 
VSL in $1,000,000  3.9 9.4 7.7 ---- 
*There are 25,343 observations in the regressions.      
Panel 2.   ORG and NIOSH Occupation Risk:1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit)  no no yes yes 
Industry/Occupation  no no no yes 
      
      
Risk/100,000  -437 -92 294 115 
    (-9.79)    (-1.12)    (3.52) (1.13) 
VSL in $1,000,000  ---- ---- 10.3 4.0 
*There are 24,960 observations in the regressions.      
Panel 3. ORG and BLS Industry Risk: 1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit)  no no yes yes 
Industry/Occupation  no no no yes 
      
Risk/100,000  -121 -31.5 -50.4 -393 
  (-2.16)    (-0.44)    (-0.63) (-3.80) 
VSL in $1,000,000  ---- ----   ---- ---- 
*There are 21,853 observations in the regressions.      
Panel 4. ORG and BLS Occupation Risk: 1995*     
      
Basic Controls  yes yes yes yes 
State  no yes yes yes 
Non-fatal risk rate (3-digit)  no no yes yes 
Industry/Occupation  no no no yes 
      
Risk/100,000  -202 -192 151 137 
  (-2.91) (-2.18) (1.51) (1.25) 
VSL in $1,000,000  ---- ---- 5.3 4.8 
*There are 15,764 observations in the regressions.      

Note: The dependent variable is the natural log of the worker’s real wage.  For the basic regression, the
independent variables include a quartic in the worker’s age, a vector of dummy variables that control
for the worker’s education, a vector of dummy variables for marital status, a vector of dummy variables
indicating whether the worker is Hispanic, Asian, African American, or other race, and a dummy
variable indicating whether the worker is under a union contract or not, and dummy variables for the
worker’s marital status.  Workers are aged 25 to 60 inclusive.  T-statistics are given in parentheses. The
data set is for 1995.  In this table, we merged the non-fatel risk rates by 3-digit occupation codes.
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Appendix Table 1: Selective Means

Variable Men Women

logarithm of real wage 2.19
(0.573)

1.90
(0.558)

age 39.7
(9.39)

40.1
(9.33)

Education
   less than junior high 0.004 0.002
   junior high 0.010 0.007
   some high school 0.056 0.044
   some college 0.181 0.207
   associate degree 0.085 0.111
   bachelor’s degree 0.234 0.199
   master’s degree 0.082 0.063
   professional degree 0.023 0.012
   Ph.D. 0.019 0.008
union coverage 0.021 0.022
Marital status
   widowed 0.005 0.022
   divorced 0.106 0.174
   never married 0.177 0.135
non-fatal injury risk 1.68

(2.099)
1.17

(1.538)
NIOSH industry fatal injury rate 5.00

(6.997)
2.91

(5.431)
NIOSH occupation fatal injury rate
(men n = 24,586) (women n = 24,960)

5.23
(6.737)

2.33
(4.035)

BLS industry fatal injury rate
(men n = 20,920) (women n =21,853)

5.91
(7.640)

2.56
(4.159)

BLS occupation fatal injury rate
(men n = 17,836) (women n = 15,764)

6.86
(12.036)

2.08
(4.025)

Notes:  Authors’ calculations.  Except where noted, there are 24,567 observations for men and 25,343
observations for women, with the samples corresponding to Panel 1 of Tables 3 and 4.  Standard deviations
are given in parentheses.




